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Abstract 

Many virological tests have been implemented during the COVID-19 pandemic for diagnostic 

purposes, but they appear unsuitable for screening purposes. Furthermore, current screening 

strategies are not accurate enough to effectively curb the spread of the disease. Therefore, the 

present study was conducted within a controlled clinical environment to determine eventual 

detectable variations in the voice of COVID-19 patients, recovered and healthy subjects, and also to 

determine whether machine learning-based voice assessment (MLVA) can accurately discriminate 

between them, thus potentially serving as a more effective mass-screening tool. Three different 

subpopulations were consecutively recruited: positive COVID-19 patients, recovered COVID-19 

patients and healthy individuals as controls. Positive patients were recruited within 10 days from 

nasal swab positivity. Recovery from COVID-19 was established clinically, virologically and 

radiologically. Healthy individuals reported no COVID-19 symptoms and yielded negative results 

at serological testing. All study participants provided three trials for multiple vocal tasks (sustained 

vowel phonation, speech, cough). All recordings were initially divided into three different 

binary classifications with a feature selection, ranking and cross-validated RBF-SVM 

pipeline. This brough a mean accuracy of 90.24%, a mean sensitivity of 91.15%, a mean 

specificity of 89.13% and a mean AUC of 0.94 across all tasks and all comparisons, and 

outlined the sustained vowel as the most effective vocal task for COVID discrimination. 

Moreover, a 3-way classification was carried out on an external test set comprised of 30 

subjects, 10 per class, with a mean accuracy of 80% and an accuracy of 100% for the 

detection of positive subjects. Within this assessment, recovered individuals proved to be the 

most difficult class to identify, and all the misclassified subjects were declared positive; this 

might be related to mid and short-term vocal traces of COVID-19, even after the clinical 

resolution of the infection. In conclusion, MLVA may accurately discriminate between positive 

COVID-19 patients, recovered COVID-19 patients and healthy individuals. Further studies should 

test MLVA among larger populations and asymptomatic positive COVID-19 patients to validate 
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this novel screening technology and test its potential application as a potentially more effective 

surveillance strategy for COVID-19. 
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1. Introduction 

The Coronavirus Disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2), has reached more than 200 countries to date, jeopardizing 

healthcare systems and national administrations worldwide [1-3]. At the time of writing (September 

2021), over 225 million confirmed cases and more than 4.5 million deaths had been reported 

globally [4]. To curb the alarming spread of the disease, several virological tests were promptly 

implemented, including reverse transcription-polymerase chain reaction (RT-PCR) for viral RNA 

detection [5], serologic testing for immunoglobulins M (IgM) and G (IgG) quantification [6] and 

rapid diagnostic kits [7,8]. Nevertheless, available testing strategies suffer from critical limitations 

in accuracy and most appropriate clinical applications [9,10]. Furthermore, inadequate testing 

infrastructures, high costs, lack of testing components, and long waiting times for results might 

have contributed to the poor control of the pandemic [11,12], leading to an underestimation of the 

infection’s actual burden [13]. 

Specifically, the limitations of current screening strategies (symptoms checklists, temperature 

checking) [14,15] stress the need for new instruments, which should be highly sensitive, but also 

widely accessible, non-invasive, cost-effective, and able to provide results quickly and at scale [16]. 

Within this frame, the present research project was designed to test a novel COVID-19 screening 

tool based on voice analysis through machine learning (ML). Conventional voice analysis proved 

useful in detecting distinguishing acoustic features of pathologies impairing all structures and 

systems responsible for phonation, including lungs [17-19], trachea [20], larynx [21-23], vocal folds 

[24,25] and central nervous system [26-30]. Furthermore, encouraging results had been obtained for 

disorders impairing voice production mechanisms only secondarily, including cardiovascular 

diseases [31-34] and diabetes [35]. Advantageously, ML-based voice assessment (MLVA) allows 

processing thousands of acoustic variables simultaneously, benefiting from the computational 

power of properly trained algorithms [36,37]. Moreover, MLVA confirmed its efficacy even on 
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samples gathered through non-professional recording instruments (i.e., smartphones) [38,39], 

making this technology potentially available on a global scale through mobile devices.  

Deep learning (DL), especially based on Convolutional Neural Networks (CNN) applied to 

images or Long Short Term Memory networks (LSTM), is commonly considered as the huge 

alternative to “traditional” machine learning pipeline methods. The advantages include the 

fact that it allows for the extraction of very complex features, through the repeated non-linear 

transformation of the data, and that it’s completely data-driven, without the requirement of a 

suitable pre-processing of the training set. However, deep learning is often hard to use for 

small datasets, requiring larger sets (often in the order of thousands and more [40]) by its 

nature and/or a suitable data augmentation procedure, which indeed becomes a pre-

processing artifact. Moreover, DL models usually comprehend a large number of parameters 

and require more hardware resources for their training. Several studies [41] [42] eloquently 

demonstrate the possibilities of DL for pathological speech assessment, yet the datasets and 

the accuracy values are often comparable with traditional ML methods for the same 

pathologies, namely Parkinson’s disease [43] or dysphonia [44]. Moreover, a study by Hasan 

et al. [45] compares CNN and SVM for hyper-spectral image recognition with the results 

being very similar, with a slight edge of the SVM. Although apparently different from our 

task, hyper-spectral images are in fact translated as image inputs for CNN’s and as a set of 

complex features for the SVM, which is exactly how a speech-based pathology detection is 

carried out.  

We considered the two approaches equally promising, and hugely problem-dependent. For 

this specific study, we chose a traditional SVM-based machine learning pipeline based on 

many state-of-the-art performances on pathology identification with small datasets, but also 

considering our need to still retain clinically relevant features in our analysis, which would be 

a much more difficult task using a high-abstraction DL-based approach.  
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Interestingly, over the last few months, some research groups have been racing worldwide to search 

for COVID-19 acoustic biomarkers [46], mainly focusing on cough and breath sounds and yielding 

promising results [47-49]. The DiCOVA challenge within the Interspeech 2021 conference is 

also worth mentioning, where several teams tested algorithms for the identification of 

COVID-19 from crowdsourced voice samples [50], with the winning team accuracy being 

87%. Nonetheless, several limitations of these studies appear noteworthy. Firstly, data was mainly 

collected through web-based platforms, thus bounding researchers to rely on patients’ self-

declarations. Secondly, being conducted outside of controlled clinical settings, incomplete clinical 

data were often provided (i.e., testing type and timing, inclusion and exclusion criteria, COVID-19 

symptoms). Thirdly, to the best of our knowledge, only two studies included vocal samples other 

than cough in the analyses [50,51]. Specifically, in our opinion, proper speech tasks could provide 

valuable additional features for MLVA implementation, in reason of the complex interactions 

between voice-production subsystems [36,52] and their peculiar impairments in COVID-19 [53-

55,57]. Lastly, no ML study enrolled recovered COVID-19 patients to date, even though they may 

represent a crucial population for multiple reasons, including potential residual viral spreading [58-

60] and severe long-term disabilities [61-63]. 

Therefore, the present study was designed to test MLVA as a potential screening tool for COVID-

19 within a controlled clinical setting, collecting multiple vocal tasks (sustained phonation, speech, 

cough) with commercially available smartphones from three different subpopulations (positive 

COVID patients, recovered negative COVID-19 patients, healthy controls). 
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2. Material and methods 

2.1 Study design 

The study was conducted between March 2020 and October 2020 at three Italian COVID-19 units 

after approval of the ethics committees (IRCCS San Matteo Foundation, Pavia, Italy, reference 

number 20200053388; Ospedale dei Castelli, Ariccia, Italy, reference number 0064181/2020; 

Policlinico Tor Vergata Foundation, Rome, Italy, reference number 0012909/2020). The study was 

conducted following the principles stated by the Helsinki Declaration [64]. 

2.2 Study population 

For the present study, 70 positive COVID-19 patients (group P), 70 recovered negative COVID-19 

patients (group R) and 70 healthy individuals (group H) matching inclusion and exclusion criteria 

(Table 1) were consecutively recruited. An additional test sample population of 10 subjects per 

group (15 males and 15 females; median age 53 years; IQR 37-63) was also recruited. Positive 

COVID-19 patients were recruited within ten days from nasal swab (NS) positivity. For positive 

patients, COVID-19 pneumonia was diagnosed clinically and radiologically through chest 

computed tomography (CT). Recovery from COVID-19 was confirmed clinically, radiologically, 

and with two consecutively negative NS tests. Moreover, only recovered patients with a Lung 

Ultrasound (LUS) score ≤ 3 were recruited, to exclude subjects with residual pulmonary fibrosis 

[65-67].
 
Healthy individuals were recruited among hospital staff members and their acquaintances if 

they never had tested positive for COVID-19, reported no COVID-19 symptoms, nor had 

unprotected exposure to COVID-19 cases (known or suspected). Serum samples (SS) for antibodies 

quantification were collected from healthy participants at least 20 days after recording sessions [68-

70], yielding negative results. Written informed consent was obtained from all participants. All data 

was pseudonymized. 

2.3 Voice recordings 

Recording sessions were conducted in similar hospital rooms, with quiet environments and 

tolerable levels of background noise. Specifically, no machines producing static or impulsive 
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noises were running in the background and no other voices were captured while recording. 

Moreover, global quality of the recordings was assessed by ear by three independent audio 

engineers, rating samples as “acceptable” based on voice clarity, absence of noticeable reverb, 

absence of noticeable hiss or hum noises, and intelligible phonation. Voice samples were 

recorded with Huawei Y6-2019 smartphones (Huawei Technologies Co., Ltd., Shenzhen, China), in 

high quality and uncompressed format (.wav, 16-bit, 44.1 kHz). Devices were carefully disinfected 

after each use, according to the manufacturer’s instructions. Participants were instructed to sit up 

straight on chairs with no armrests, keeping elbows and arms relaxed to avoid arm and shoulder 

strain. During recording sessions, all participants removed their masks not to alter acoustic signals 

nor speech intelligibility [71-73]. The device’s microphone was placed 15-20 cm in front of the 

participants’ mouths. Three distinct vocal-tasks were performed by each participant: (1) sustained 

voicing of the vowel /a/ (like in “bra”), at comfortable pitch and loudness, for at least 5 seconds; (2) 

a common Italian saying (“a caval donato non si guarda in bocca”, literally “do not look a gift horse 

in the mouth”); (3) cough. Three trials were recorded for each task. For the vowel and the sentence 

tasks, the trial with the lowest competing noise was then selected for MLVA [74], while all three 

cough trials were considered for the analyses. Recordings with poor audio quality or 

mispronunciation errors were then discarded from the analyses (Table S1 in the Supplement). All 

recordings were uploaded to a secure institutional server. Audio files were then trimmed to retain 

only vocalizing sections. Each participant provided three trials for each task effortlessly. 

Specifically, recording sessions required no more than two minutes for each participant.  

 

2.4 Machine learning-based voice assessment (MLVA) 

MLVA was performed in five steps: pre-processing, feature extraction (FE), feature selection (FS), 

feature ranking (FR), and classification (CL). First, raw audio data of all vocal tasks underwent pre-

processing elaboration. Specifically, Root Mean Square (RMS) normalization was applied to feed 

the algorithms with normalized data, thus mitigating variations related to different recording 
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environments. Subsequently, FE was performed embedding OpenSMILE (OpenSMILE; 

audEERING GmbH, Munich, Germany) [75] in a bash script, following previously validated 

protocols [39]. A total of 6373 unidimensional features was extracted using the configuration file of 

the INTERSPEECH2016 Computational Paralinguistics Challenge (IS ComParE 2016) feature 

dataset [75]. Subsequently, FS, FR and CL were performed using the software Weka (Waikato 

Environment for Knowledge Analysis; University of Waikato, Waikato, New Zealand) [76]. 

Starting from FS, audio files were organized into nine different datasets, with three binary 

comparisons between the classes, each being based on the three vocal tasks. Thus, the training 

set was arranged for one-versus-one comparisons, namely P versus H, P versus R and R 

versus H. According to a Greedy-Stepwise search method, each binary dataset underwent FS with a 

Correlation-Based approach [77], retaining approximately 2% of the previously extracted features. 

FR was performed basing on heuristic merit factors through a linear SVM classifier [78]. The first 

fifty top-ranking features were preserved for each dataset, retaining the most informative content 

while maintaining a standardized number of features. Finally, CL was conducted through the SVM 

classifier (Radial Basis SVM), which was selected for its effectiveness within the analysis of 

relatively small datasets [79,80]. Accuracy on the training set, for each binary classifier (binary 

MLVA), was calculated by means of a 10-fold cross-validation, dividing the whole set into 

folds and using a different one of those as a validation set each time. Final accuracy is the 

average of the ten accuracies obtained on each 9-to-1 set. On the other hand, the test accuracy 

on the external set was obtained by running the pre-trained binary models on the test data, 

unified with a majority voting system. Since each binary model is comprised of three sub-

classifiers, one per vocal task, a majority voting system was also used to unify the outputs of 

the three sub-classifiers. Those subjects who received three different responses from the three 

binary classifiers were deemed as “uncertain”. Sensitivity and specificity were obtained 

through confusion matrices, as well as their three-class equivalent (H Accuracy, P Accuracy, 

R Accuracy).  
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2.5 Statistical Analysis 

To compare clinical and demographic characteristics, statistical tests were performed using Stata 

(StataCorp 2019, Stata Statistical Software: Release 16, College Station, TX). Qualitative variables 

were summarized as absolute counts and percentages of each category, while quantitative variables 

were summarized as medians and interquartile ranges (IQRs). Fisher’s exact test was used to 

compare categorical variables between the groups of patients. Mann-Whitney test and Kruskal-

Wallis test (with Dunn’s test for post-hoc comparisons) were used to compare quantitative variables 

between two or more groups of patients, respectively. Bonferroni’s correction was applied to allow 

for multiple comparisons. Two-sided p-values were considered statistically significant when lower 

than 0.05.  

 

  

                  



 12 

3. Results 

3.1 Study population 

Seventy positive COVID-19 patients (group P) were consecutively enrolled at the COVID-19 Units 

of the enrolled institutions. To match this population, seventy participants were consecutively 

recruited among recovered negative COVID-19 patients and healthy individuals. These subjects 

make up the training set for the binary MLVA. Clinical and demographic data are reported in 

Table 2.  

Moreover, thirty subjects (ten per class) have subsequently been collected for an external test 

sample which allowed MLVA to act as a three-way classifier. 

COVID-19 symptoms were reported by 77% of both positive and recovered patients (p > 0.90). 

More than 40% of symptomatic participants of both groups reported dyspnea on exertion and 

asthenia (p > 0.05). Cough, dyspnea at rest, blocked nose, and fever were reported more frequently 

by positive COVID-19 patients (p < 0.02 in all comparisons). Contrariwise, muscle pain was 

reported at a higher rate by recovered subjects as a residual symptom (p = 0.006). Finally, no 

relevant differences were highlighted for the remaining screened symptoms (p > 0.05). At the time 

of enrollment, COVID-19-related pneumonia had been diagnosed clinically and radiologically in 

57% of positive patients; former diagnoses of COVID-19-related pneumonia were recorded instead 

for 96% of recovered patients (p < 0.001).  

3.2 Machine learning based voice assessment (MLVA) 

Receiver Operating Characteristic (ROC) curves describing MLVA performances for each binary 

comparison between groups are depicted in Figure 1 and in Figures S1 and S2 in the Supplement 

[81].
 
Table 3 reports accuracy, sensitivity, specificity, and area under the ROC curve (AUC) values. 

Overall, MLVA for binary classifications (on the training set) demonstrated a mean accuracy of 

90.24% (range 87.88%-92.81%), a mean sensitivity of 91.15% (range 83.58%-93.27%), a mean 

specificity of 89.13% (range 85.51%-92.31%) and a mean AUC of 0.94 (range 0.91-0.97) across all 

tasks and all comparisons. According to accuracy values, the vowel task performed as the best 
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discriminator within the comparison between groups P and H (90.07%) and between groups P and 

R (92.81%). Differently, the cough task performed as the best discriminator within the comparison 

between groups R and H (90.49%). Finally, radar charts highlighting the top-ranking acoustic 

features for all tasks and comparisons are depicted in Figure 2 and in Figures S3 to S10 in the 

Supplement. The lists of all top-ranking features are reported in Tables S2 to S10 in the 

Supplement. 

For the three-way classification carried out on the external test set, accuracies of 80%, 100% 

and 60% have been obtained for the identification of healthy, positive and recovered subjects 

respectively, which brings to a mean accuracy of 80%. Noteworthily, one recovered subject 

was deemed as “uncertain”. For this external test, three binary classifiers were ensembled, 

each comprised of three ensembled sub-classifiers, one per vocal task. This unification 

procedure was carried out with a majority voting system. Binary accuracies for each sub-

classifier were calculated only for the test subjects pertaining to the two classes considered by 

each binary classifier: for example, recovered subjects were not considered in evaluating the 

accuracy within the P versus the H classifier. Confusion matrices for each sub-classifier along 

with binary accuracy, sensitivity and specificity are reported in Table 4. The final confusion 

matrix for all the test subjects is reported in Table 5, while the compact 3x4 matrix is 

reported in Table 6.  
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4. Discussion 

The present investigation, conducted within a controlled clinical setting, demonstrated that MLVA 

can accurately discriminate between positive COVID-19 patients, recovered negative COVID-19 

patients, and healthy individuals, by detecting highly-distinguishing patterns of audio features for 

all tasks across all study groups. In comparison to most previous works, this study expands MLVA 

analyses to proper speech tasks, providing further evidence in support of the potential clinical 

application of this novel screening tool for COVID-19.  

Binary MLVA (cross-validated on the training set) yielded promising results for all tasks and all 

comparisons between groups, with a satisfactory mean accuracy of 90.24% and a significantly high 

mean AUC of 0.94 [82].
 
Previous studies testing cough and breath sounds reported encouraging 

results in terms of accuracy (range 88.89%-98.50%) and AUC (range 0.80-0.98) [48,49]. However, 

comparisons with literature appear scarcely feasible, primarily for methodological reasons. Firstly, 

previous studies searching for COVID-19 acoustic biomarkers relied almost exclusively on cough, 

since it represents a well-renowned COVID-19 core symptom [83-85]. Pre-COVID-19 ML studies 

demonstrated the relevance of cough samples for detecting multiple respiratory conditions [86,87]. 

However, it is conceivable that proper speech tasks may provide additional valuable features for 

MLVA, potentially even more representative of the multifaceted interactions between phonatory 

subsystems [36,52] and their impairment in COVID-19 [53-55,57]. Indeed, the vowel task proved 

higher accuracy and AUC values than cough when discriminating between groups P and H and 

between groups P and R, demonstrating lower performances only when discriminating between 

groups R and H, thus confirming that speech tasks may have at least similar informative contents. 

With regards to sensitivity (the ability to detect subjects with the disease) and specificity (the 

ability to identify healthy individuals), binary MLVA yielded satisfactory results. In 

particular, when discriminating between groups P and H, the vowel task demonstrated the 

highest sensitivity (92.11%), while the sentence task proved the highest specificity (92.31%). A 

preliminary observation of the selected acoustic features highlights a trend that sees domains 
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other than the frequency as the most prevalent. This is in line with the fact that differences in 

voices over the three classes are not always detectable by ear. Moreover, a prevalence of 

RASTA related features [88] can be observed: based on cepstral coefficients of a PLP 

autoregressive model, high-pass filtered in the mel-frequency domain, the RASTA domain is 

inherently insensitive to slowly varying spectral components, which are most often 

represented by background noise and differences in recording hardware and environment. 

On the other hand, RASTA is sensitive to eventual other background voices, which we were 

very careful not to include in our recordings. Pinkas [51] and Shimon [52] also obtained 

encouraging results through their preliminary analyses on proper speech tasks (vowel /a/, counting 

from 50 to 80). However, data was gathered from smaller populations of positive COVID-19 

subjects and their analyses yielded lower AUC and accuracy values. Secondly, most studies 

gathered cough samples from crowdsourced databases, allegedly to promptly gather large datasets, 

nonetheless often providing incomplete medical data.  

Foreseeing the need for an automatic tool, a three-way classifier was also developed by 

unifying the three models with a majority voting system. Thus, the features used for the 

classifications were the same used for the binary MLVA. This classification yielded 80% 

accuracy for the identification of subjects of group H, a 100% accuracy for subjects of group 

P and a 60% accuracy for subjects of group R, with 10% classified as “uncertain”. With a 

mean of 80%, the classifier still yields relevant accuracy, comparable to that of conventional 

nasal swabs, with the additional advantage of preliminarily discriminating recovered subjects. 

Furthermore, the trend of the vowel being the best discriminating task, shortly followed by 

the sentence, was confirmed. It is worth noting that all misclassified recovered subjects were 

declared positives. This might suggest that the COVID-19 “signature” persists in the voice in 

the mid and short-term, even when the clinical course of infection is over. This is in line with 

considerations by Helding et al. [89] on COVID-induced long-lasting damages to the 

phonatory system, which are especially concerning for voice professionals such as singers and 
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therefore deserve attention.  

These promising results further support the potential employment of MLVA as a COVID-19 

screening tool. Regarding eventual on-site examinations, we would naturally consider the 

building of an uncrowded and noise-free environment very beneficial, especially regarding the 

complexity of the problem which requires clean datasets. However, the presence of noise-

robust features like RASTA and the caveat of avoiding background voices in the recordings 

could be sufficient, to an extent that still needs to be thoroughly tested, for an on-site 

examination outside the clinical environment, such as in closed spaces placed in the territory 

or even in a silent room at one’s house. Naturally, an automatic tool in a “real” environment 

will possibly require a new training process. 

The present research was conceived to overcome the critical issues of current screening strategies, 

such as symptoms checklists and temperature checking. Regarding symptoms checklists, a recent 

review concluded that commonly screened COVID-19 signs and symptoms have low diagnostic 

accuracy, since neither presence nor absence of symptoms is accurate enough to confirm or rule out 

the disease [14]. Temperature screening appears to be an unreliable, high-cost, and low-yield 

strategy [15]. Indeed, in a study investigating European patients' clinical features, only 45% of 

mild-to-moderate COVID-19 patients had fever, and the rate dropped to 9% when asymptomatic 

individuals were also considered [84]. Therefore, based on our preliminary results, we believe that 

MLVA could represent a more reliable, cost-effective, non-invasive, and widely deployable 

COVID-19 screening tool. Specifically, several MLVA screening scenarios could be envisioned: (a) 

population daily screening, potentially localizing new viral hotbeds; (b) remote testing, limiting 

infectious risk for healthcare workers by reducing in-person interactions; (c) alternative COVID-19 

testing where virological tests are scarcely accessible or poorly available [90]. 

Furthermore, MLVA could also be employed at scale to preselect candidates for virological testing 

because of its high sensitivity and specificity. Interestingly, a recent meta-analysis highlighted that 

sensitivity and specificity of currently available COVID-19 diagnostics are not equally high, 
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ranging from 97.2% of RT-PCR analyses of sputum samples to 73.3% and even 62.3% when RT-

PCR is performed on NS specimens and saliva, respectively [91]. This variability may be primarily 

related to COVID-19 clinical course, since chances of viral detection on biological samples depend 

on specific collection times [91,92]. Moreover, being time-consuming and expensive [93], these 

technologies appear unsuitable for reiterated population screening. Contrariwise, effective 

surveillance regimens (aimed at rapidly filtering infected individuals out from the population, thus 

preventing further spreading) should focus instead on high-frequency testing, even with lower 

analytic sensitivity [94]. Both high-sensitivity and low-sensitivity tests can detect the infection 

within its narrow transmission window, but only frequently repeated tests can spot it during its very 

early phases [95]. In this matter, being a low-cost and widely spreadable technology (i.e., 

smartphones), MLVA could potentially be employed to test large populations recurrently over time, 

suggesting prompt confirmation through virological diagnostics when suspected cases are detected, 

making this novel technology a more effective COVID-19 filter. It is to be stressed that, in the 

case of quite rare diseases such as COVID-19, screening tests with high specificity and 

Positive Predictive value (PPV, the probability that subjects with a positive test truly have the 

disease) are preferrable, as they offer a better “rule in” test. However, the diagnostic 

parameters of a screening test (such as accuracy, specificity and sensitivity) are not intrinsic 

properties of the test itself, but they do strongly depend upon the clinical setting in which the 

test is applied. Therefore, in order to reduce falsely positive results, data regarding the actual 

prevalence of COVID-19 should be taken into account in order to weight the results of this 

screening tool. Nevertheless, patients should always be sent to conventional diagnostics for 

confirmation (i.e., RT-PCR) in case of positive results [96,97]. 

Although the test set is not large, preliminary results stresses the potential utility of MLVA as 

an on-site screening tool used in substitution or in addition to nasal swabs for pre-diagnosis, 

as well as the possibility to develop an application for real-time, remote self-assessment. In 
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these regards, we consider MLVA to only be a preliminary tool which should suggest a more 

extensive examination in case of a positive outcome.  

Recruited healthy individuals had to respect strict inclusion criteria. Furthermore, SS testing was 

conducted at least twenty days after recording sessions, yielding negative results. Similarly, 

Laguarta [49] crowdsourced cough samples from healthy individuals who declared having tested 

negative, nevertheless not specifying testing type. For the present investigation, control subjects did 

not undergo baseline NS testing, since NS may yield falsely-negative results [98], especially in 

early phases of COVID-19 and with potentially high rates [99]. Instead, numerous studies 

demonstrated that seroconversion rates in positive COVID-19 patients reach almost 100% 15 to 19 

days after symptoms onset [68-70], suggesting that delayed immunological confirmation might 

offer a more reliable strategy when recruiting healthy control subjects during the present pandemic. 

Noteworthily, this is the first study testing MLVA on recovered COVID-19 patients, with 

promising results. Specifically, the satisfactory classification accuracy obtained discriminating 

between positive and recovered patients suggests that MLVA may detect different COVID-19 

clinical phases. Therefore, further studies should test MLVA in monitoring disease progression. 

Moreover, the results obtained within the discrimination between recovered and healthy individuals 

suggest that COVID-19 may leave detectable vocal traces even without clinically evident 

pulmonary impairments. In fact, all recovered patients had a Lung Ultrasound Score of 3 or lower 

[65-67]. The importance of recruiting recovered patients lies in the fact that these subjects might 

test positive again, although the reasons behind it (i.e., reinfections, new viral variants, reactivation 

of former infections) and eventual residual viral spreading are still debated [58-60]. Ultimately, it is 

expected that healthcare systems will face critical challenges in the future for the management of 

recovered COVID-19 patients due to potential long-term invalidating sequelae [61-63,100,101]. In 

this matter, MLVA could offer a feasible and low-cost strategy to detect these subjects among the 

general population.  
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Lastly, some limitations of the present investigations must be stated. Firstly, most positive and 

recovered COVID-19 patients (77%) presented clinical symptoms of the disease. Future studies 

should address this experimental approach to positive but asymptomatic patients, thus improving 

MLVA performances in the pre-clinical phases of COVID-19 [102]. Secondly, we are aware that 

our study's sample size was limited, and that the lack of sample size calculation limits the ability to 

draw ultimate inferences in support of a prompt employment of MLVA in clinical practice. 

Therefore, although promising, the results of the present study should be intended as preliminary 

[103]. However, the adopted rigorous methodology and the homogenous population of this study 

(same ethnicity, language and nationality) support the quality of our results, hopefully dispelling 

some skepticism towards this pioneering screening technology. Wider multicultural and 

multilanguage study should be designed to confirm our findings among international populations, in 

order to rapidly answer the pressing need for a more effective surveillance strategy for COVID-19 

[104].
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5. Conclusions 

In conclusion, the present MLVA model demonstrated high accuracy for the discrimination 

between positive COVID-19 patients, recovered negative COVID-19 patients and healthy control 

subjects within a controlled clinical setting. A preliminary three-way classification proves the 

feasibility of an automatic tool. Moreover, the prevalence of noise-robust acoustic features 

like the RASTA domain suggest that an on-site examination is possible, especially in 

sufficiently noise-free environments. Further studies should test MLVA with pauci-

symptomatic positive subjects, which are prevalent in the post-vaccine era, and will also focus 

on long-term recovered subjects. Moreover, further examinations would be beneficial 

especially with wider datasets among larger populations, in order to validate this novel screening 

instrument and  answer the pressing need for a more effective surveillance strategy for COVID-19. 
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Figures 

Fig. 1. ROC curves comparing MLVA performances for all tasks within the discrimination 

between positive COVID-19 patients (group P) and healthy individuals (group H). 
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Fig. 2. Discrimination between positive COVID-19 patients and healthy individuals based on 

the first 20 top ranking features of the vowel task. 

 

The red line of this radar plot corresponds to positive COVID-19 patients (group P), while the blue 

line corresponds to healthy individuals (group H). Each radius represents a distinct audio feature. 

Each point on the red line represents the feature's mean value for group P, normalized to its mean 

value for group H. Out of the original fifty top-ranking features, only the first twenty were reported 

for convenient viewing reasons. The list of all 20 top-ranking features is depicted in Table S2.  

                  



 34 

Tables 

Table 1. Inclusion and exclusion criteria for the three study groups 

Inclusion criteria 
Group 

P 

Group 

R 

Group 

H Exclusion criteria 
Group 

P 

Group 

R 

Group 

H 

Age between 18 and 80 years ■ ■ ■ Drugs acting on CNS ■ ■ ■ 

European ethnicity ■ ■ ■ Head and neck cancer ■ ■ ■ 

Italian native speaker ■ ■ ■ Lung cancer ■ ■ ■ 

Positive NS (< 10 days) ■ ■ NA Chemoradiation therapy ■ ■ ■ 

Two consecutive negative NS NA ■ NA C-PAP therapy ■ ■ ■ 

LUS ≤ 3 NA ■ NA Tracheal intubation ■ ■ ■ 

Negative SS (> 20 days) NA NA ■ Tracheostomy ■ ■ ■ 

Abbreviations: P, positive COVID-19 patients; R, recovered negative COVID-19 patients; H, 

healthy control subjects; NS, SARS-CoV-2 nasal swab for RNA detection; LUS, lung ultrasound 

score; SS, SARS-CoV-2 serum sample for IgM and IgG quantification; CNS, Central Nervous 

System; C-PAP, Continuous Positive Airway Pressure; LUS, Lung Ultrasound score; NA, not 

Apre-cable. 
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Table 2. Clinical and demographic characteristics of the three study groups. 

Variables 
Group P 

(n = 70) 

Group R 

(n = 70) 

Group H 

(n = 70) 

p-value 

Global P vs H P vs R R vs H 

Age, median (IQR), years 
57 

(39-67) 

59 

(48-69) 

41 

(29-54) 
< 0.001 < 0.001 0.215 < 0.001 

Gender        

  Males, n (%) 40 (57%) 45 (64%) 37 (53%) 
0.402 NC NC NC 

  Females, n (%) 30 (43%) 25 (36%) 33 (47%) 

BMI, Median (IQR), kg/m
2
 

27.8 

(26.1-31.2) 

26.5 

(24.4-30.5) 

24.3 

(22.4-28.6) 
0.015 0.006 0.458 0.043 

Smoking habits        

  Non-smokers, n (%) 35 (50%) 38 (54%) 38 (54%) 

0.005 0.333 0.522 0.003   Smokers, n (%) 8 (11%) 2 (3%) 15 (21%) 

  Ex-smokers, n (%) 27 (39%) 30 (43%) 17 (24%) 

COVID-19 pneumonia diagnosis,
 
n (%)

2 
40 (57%) 67 (96%) - < 0.001 - - - 

COVID-19 symptoms        

  Presence of symptoms, n (%)  54 (77%) 54 (77%) - > 0.90 - - - 

  Number of symptoms, median (IQR) 2 (1-4) 2 (1-3) - 0.096 - - - 

  Asthenia (n, %) 29 (41%) 39 (56%) - 0.128 - - - 

  Dyspnea on exertion (n, %) 29 (41%) 31 (44%) - 0.864 - - - 

  Cough (n, %) 34 (49%) 8 (11%) - < 0.001 - - - 

  Muscle pain (n, %) 10 (14%) 25 (36%) - 0.006 - - - 

  Dysphonia (n, %) 23 (33%) 5 (7%) - < 0.001 - - - 

  Olfaction disorder (n, %) 13 (19%) 6 (9%) - 0.137 - - - 

  Taste disorder (n, %) 12 (17%) 5 (7%) - 0.119 - - - 

  Olfaction and taste disorder (n, %) 13 (19%) 6 (9%) - 0.137 - - - 

  Dyspnea at rest (n, %) 15 (21%) 2 (3%) - 0.001 - - - 

  Blocked nose (n, %) 11 (16%) 2 (3%) - 0.017 - - - 

  Headache (n, %) 6 (9%) 7 (10%) - > 0.90 - - - 

  Fever (n, %) 7 (10%) 0 (0%) - 0.013 - - - 

  Dysphagia (n, %) 1 (1%) 5 (7%) - 0.209 - - - 

  Chest pain (n, %) 2 (3%) 3 (4%) - > 0.90 - - - 

Data regarding COVID-19 pneumonia and COVID-19 symptoms were collected only for positive 

and recovered COVID-19 patients, therefore cells are left blank for healthy control subjects. Data 

about pneumonia for group P refer to ongoing COVID-19 pneumonia diagnosis at the time of 

enrollment, while for group R they refer to previously diagnosed and currently recovered COVID-

19 pneumonia. Abbreviations: P, positive COVID-19 patients; R, recovered negative COVID-19 

patients; H, healthy control subjects; IQR, interquartile range; NC, not calculated; BMI, body mass 

index; COVID-19, coronavirus disease 2019. 
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Table 3. Accuracy, sensitivity, specificity and Area under the curve (AUC) of Machine-

Learning based Voice Analysis for all tasks and all comparisons between groups. 

Comparison Vocal task Accuracy 
(%) 

Sensitivity 

(%) 
Specificity 

(%) AUC (CI) Cut-off 

Group P versus Group H 

Vowel /a/ 90.07 92.11 88.00 0.94 

(0.90-0.98) 0.93 

Sentence 87.88 83.58 92.31 0.91 

(0.86-0.96) 0.85 

Cough 89.44 91.28 87.50 0.92 

(0.90-0.94) 0.91 

Group P versus Group R 

Vowel /a/ 92.81 92.86 91.43 0.97 

(0.95-1.00) 0.94 

Sentence 91.18 91.04 91.30 0.96 

(0.92-1.00) 0.94 

Cough 91.50 93.27 89.58 0.94 

(0.92-0.96) 0.92 

Group R versus Group H 

Vowel /a/ 89.21 92.86 85.51 0.92 

(0.87-0.97) 0.93 

Sentence 89.55 92.75 86.15 0.96 

(0.92-0.99) 0.93 

Cough 90.49 90.63 90.36 0.92 

(0.90-0.94) 0.91 

Abbreviations: P, positive COVID-19 patients; R, recovered negative COVID-19 patients; H, 

healthy control subjects; CI, 95% confidence interval. 
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Table 4. Confusion matrices for each sub-classifier over the external test set, along with 

binary accuracy, sensitivity and specificity calculated on the two respective classes for each 

comparison. 

# 
Real 

Class 

P versus H P versus R R versus H 

Vowel /a/ Sentence Cough Vowel /a/ Sentence Cough Vowel /a/ Sentence Cough 

1 H H H H P P P H H R 

2 H H H H R P P H H R 

3 H P H H P P P H H R 

4 H H H H P P P H H H 

5 H H H H P P R H H R 

6 H H H H P P P H H R 

7 H P H P R P P H H R 

8 H P H P P P P H H H 

9 H H H H P P P H H R 

10 H H H H P P P H H H 

11 P P P P P P P R R R 

12 P P P P P P P R R R 

13 P P P P P P P R R R 

14 P P H P P P P H R R 

15 P P P P P R P R R R 

16 P H P P P P P R R R 

17 P P P P P P P R R R 

18 P H P P P R P R R R 

19 P P P P P P P R R R 

20 P P P P P P P H R R 

21 R H H H R R R R R R 

22 R P P H R R R R R R 

23 R H H H R R P R R R 

24 R P P H R P P R R R 

25 R P P H R P P R R R 

26 R P H H R R P R R R 

27 R P H H R P P R R P 

28 R H P H R R P R P R 

29 R P P H R P P R R R 

30 R H H H R R P R R R 

Accuracy (%) 75 95 90 100 80 60 100 95 60 

Sensitivity (%) 80 90 100 100 100 100 100 90 90 

Specificity (%) 70 100 80 100 60 20 100 100 30 

Abbreviations: #, number of test subject; P, positive COVID-19 patients; R, recovered negative 

COVID-19 patients; H, healthy control subjects.  
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Table 5. Final confusion matrix for the three classifiers on the external test set along with 

mean accuracy and per-class accuracies. 

# 
Real 

Class 

Binary Classifiers output: 
Final  Error 

P versus H P versus R R versus H 

1 H H H P H  

2 H H H P H  

3 H H H P H  

4 H H H P H  

5 H H H P H  

6 H H H P H  

7 H P H P P yes 

8 H P H P P yes 

9 H H H P H  

10 H H H P H  

11 P P R P P  

12 P P R P P  

13 P P R P P  

14 P P R P P  

15 P P R P P  

16 P P R P P  

17 P P R P P  

18 P P R P P  

19 P P R P P  

20 P P R P P  

21 R H R R R  

22 R P R R R  

23 R H R R R  

24 R P R P P yes 

25 R P R P P yes 

26 R P R R R  

27 R H R P uncertain uncertain 

28 R H R R R  

29 R P R P P yes 

30 R H R R R  

Accuracy (%) 80  

H Accuracy (%) 80  

P Accuracy (%) 100  

R Accuracy (%) 60  

Abbreviations: #, number of test subject; P, positive COVID-19 patients; R, recovered negative 

COVID-19 patients; H, healthy control subjects; Final, final prediction obtained through majority 

voting of the three classifiers; Error, whether a mis-classification has occurred.  
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Table 6. Final 3x4 confusion matrix. 

True class 
Classified as 

H (%) P (%) R (%) Uncertain (%) 

H (%) 80 20 0 0 

P (%) 0 100 0 0 

R (%) 0 30 60 10 

 

Abbreviations: P, positive COVID-19 patients; R, recovered negative COVID-19 patients; H, 

healthy control subjects. 

 

 

                  


